Development of Emergency Image in Students Psychological-Pedagogical Problems

Nozima Gulomova¹ and Saidkarim Saidaliyev²

¹Associate Professor, Tashkent State Pedagogical University named after Nizami
²Ph.D., Associate Professor, Tashkent Architectural Construction Institute, Tashkent, Uzbekistan.

Abstract - In this work, the didactic possibilities of using elements of the traditional developed a system of graphic exercises based on Eastern architectural traditions; determined the ways and methods of their use in the process of teaching the course “Descriptive Geometry” in higher educational institutions of artistic direction. Separate research results are published in scientific and methodical journals and collections of scientific papers.

Keywords - Method, drawing, descriptive geometry, prospect, technology, the form, design introduction, receivership, efficiency, graphic literacy.

As you know, people differ in many ways. For example, some people are able to remember what they have seen and remember when they need it. Some have the ability to describe every single object they have ever seen. Still others have a clear idea of what they are hearing, while others can express their feelings in simple, fluent language, while others tend to add fantasy elements to every drawing. So people have different perceptions of the outside world and their ability to sort them out. On the other hand, there are some professions that allow the perfection of certain traits in a person. For example, if the operator working on major auto-control systems learns to focus on any minor changes, the constructor will be adept at abstract mathematical calculations. Consequently, a person's reflection on the external world features and attributes will depend on his / her ability to develop and his / her professional skills. That is why we focus on the processes of cognition, which are important forms of reflection in every consciousness - the way in which a person's life and professional growth in cognition, senses, memory, attention, thinking, imagination, will and emotions.

These processes are very close and familiar to human beings. Because we all know our consciousness, some of the unique and holistic features of things and events that surround us. We also know that these things and events bring about our own unique emotions in each particular situation.

For example, a person who is familiar with the layout of the book will not ask others to read it. These processes are natural processes. Only by examining the geometry of the night during the exam, you are more interested in why you don't remember the material before the teacher, and you come to the conclusion that "I need to work on my memory."

Indeed, cognitive processes are well-controlled processes, and if you want to expand your capabilities or enhance your abilities, you need to know the rules and specifics of those processes.
The human mind at first sight is a whole, in fact it consists of some separate process. These processes are perceptions, cognition, memory, attention, thinking, speech, imagination, skills and so on. These processes are so interconnected that it is difficult to imagine one another. For example, do you think about what you see and understand? You will remember what you read or read carefully. Or we need both our previous perceptions and our ability to remember, our inner speech, our will, and our attention to thinking about drawing geometry. Even if we accidentally get into geometry issues, our reaction, in addition to emotions, causes a number of thought processes, such as how these things came to be here.

With the advent of sophisticated computer technology, a person's interest in his or her mental processes has increased. We are now talking about data acquisition (similar to what we call traditional cognition), reuse (storage), and storage. But it also raises the question of the importance and nurture of natural living processes in man.

Analogous condition is also often present in our memory. When we come up with a science issue, we think: where did I see it? You may not remember, but the problem is familiar with its structure, development principle, and so on. It is also necessary to explain that what the person experiences is actually stored in the brain because of exercise, and we can only bring some to the consciousness. Only when we are sick or worried about something will we have different thoughts. They are, in fact, an accidental recovery of what they already have.

Experiments have shown that students inadvertently focus on mental processes in teaching science and more often remember what they see in them. Therefore, the course will be followed by a demonstration of thematic tools. To our knowledge, successes in this area are highly effective, and some experts do not. It is worth noting here. The lack of specialists in engineering graphics and drawing geometry in higher education, and the teaching of engineering graphics and drawing geometry among other specialists, have a significant impact on student learning.

In our country, where reforms and restructuring of all types of education are carried out, it is important to train young professionals with deep theoretical and practical sections in each subject, including drawing.

Currently, higher education institutions have high requirements for teaching drawing and drawing geometry. Extensive work is being done to fulfill the requirements. Graduates, of course, are in demand of the state, development of science and technology, the development of science and the training of personnel for the new generation. Based on this, we face the following problems in personnel training.

There is a gradual increase in students' progress in teaching engineering graphics and drawing geometry. For example, when an engineering education is taught at a school, they will complete that education and have a basic knowledge formed during their studies at higher education institutions. When studying geometry at school, the foundation for drawing geometry is also laid. However, compared to engineering graphics, the underlying geometry background is low. Therefore, some 30% and up to 60% do not form spatial representations or show the stages of formation. This is a problem for engineering graphics and drawing geometry. Because of the negative consequences of this, students will not develop space graphics, which is the cornerstone of engineering graphics and drawing geometry, and will produce poor staff. The essence and basis of this subject is only absorbed and understood by those who have a spatial understanding, developed, experienced and skilled. This is because, first of all, it may or may not be difficult for the student to accept the subject, and secondly, if the information contained in the new topic is familiar to the student and repetitive, and thirdly, he may not fully understand the subject. Fourthly, it can be said that students are busy and neglected during the course. This is rare, but probably not the case for experienced teachers.

In higher education, the topics covered during the school years are broad and complex. This course also allows students to develop space vision.

In traditional education, the teacher makes the course mostly for low-achieving students. In this case, excellent students in the classroom can find that subject descriptions are boring and undermine their interest, and on the contrary, students who are difficult to master are left behind in the learning process at any time. This is because the difference between the student's learning performance and the performance of the students does not allow the learning process to be activated.

The study of these problems in the education system, in light of the above-mentioned factors, which have a negative impact on the process of educational process, should be highlighted in the research work of psychologists and educators, and the need for new methods in the field of education. This will lead to further improvement of the process. The introduction of methodological tools, particularly in Eastern architectural traditions, to the
development of spatial representations of students in the teaching of geometry in higher education has some positive results.

During the lesson, the student's mental activity is thought-provoking. To do this is to give students challenging tasks that will help them to improve their mental functioning and motivation. In a normal classroom, a teacher dedicates a lot of time to a new topic statement. As a result, it is often difficult to reinforce the past, relate it to the new, and most importantly, control and evaluate its knowledge. Unfortunately, many of our teachers think that organizing the classroom process is merely a transfer of new knowledge, which is considered a secondary feature of student activity and intellectual development. As a result, the student gets bored of the subject and has to wait for the call.

To overcome such problems, students need to use techniques in the development of spatial imagery in Eastern architectural traditions. Because the curriculum material not only develops the student's individual performance and spatial imagination, but also helps them to take the lead.

Interesting sequence of topics, self-monitoring training programs, program didactic games designed to make learning easier and fun, encourage students to engage in individual activities. It has been established that even in such circumstances, a teacher can provide training without any negative impact.

It should be noted here that in the field of drawing geometry the activity of students is achieved due to the development of the Oriental architectural traditions, the development of spatial representations, and the improvement of their educational activities accelerates.

The extent to which the learning material is understood, reflected in the mind, and the knowledge gained from that information is determined by the principle of instruction. It improves the quality of teaching, facilitates learning. As a result of the active operation of all the sensors of the student's sensory analyzers, the knowledge of the object is stored and stored in the memory. However, many institutions of higher education are now showing that traditional teaching aids are not in demand.

In particular, the Abu Raykhan Beruni Tashkent State Technical University, the Ministry of Higher and Secondary Special Education of the Republic of Uzbekistan are involved in the learning processes of geometry at the Tashkent State Institute of Light Industry, the Tashkent State Institute of Architecture and the Samarkand State Architectural Construction Institute. It is equipped with visual aids but the level of use and development of new developments is poor. This is because 20-60% of them are suitable for the layout of subject-based charts, visual aids and content. In many cases, higher education is not well-equipped with a drawing geometry room.

It is noteworthy that 60% of the students asked the question, "Do you show them the hardest topics you can learn from research in higher education institutions?" said that it was much harder to find the topics in the line drawings.

The question, "Why do you need more visual art through Oriental architectural traditions?" Indicates that more than 85% of students need tools for almost all topics. In addition, it is worth noting that the following ideas were put forward by the students. Currently, the technology is reaching its peak. In particular, the use of computer techniques to develop mimetic-based themes in geometry, the development of computer-based animation of themes using Oriental architectural traditions, and the use of computer techniques in the educational system is effective.

Also, teachers and students expressed their positive opinion on the need for technical support of the learning process.

In the learning process, the content is delivered to students through Oriental architectural traditions, with the following features:

- long-term knowledge of the student's geometry in the memory of the student;
- development of individual activity of the student;
- self-control;
- Teaches self-assessment and independent thinking;
- Formation of knowledge and interest of the student in oriental architectural traditions;
- educate students in the spirit of national ideas;
- Forming and honoring Oriental architecture;
- Teaches the use and future application of Oriental architects' space vision;
- Orientes the development of competitive architectural drawings and constructions to new world architectural monuments through Eastern architectural traditions;
- Develops students' visualization of spatial geometry;
- Attention stability is ensured;
• students' abilities are formed and abilities developed;
• student develops spatial imagination;
• Provides compatibility with student sensory analyzers;
• Increase students' knowledge and interest in science;
• Properly manage the learning activities;
• Encourage the student to take active action during the lesson.
• encourage the student to think in the classroom;
• Encourages the student to be active in the classroom and to do graphic work independently;
• Ability to develop and solve abilities in graphic works;
• the development of students' themes;

The person's thinking, that is, his thinking, is developed through thought-provoking actions. These are comparisons, analyzes, synthesis, generalization, abstractions, and concrete.

Another important aspect of using the Oriental architectural tradition is that it helps the student in graphic geometry to have a complete and accurate understanding of a topic or topic.

Here are some examples:

Architecture, various parts, machine details and various geometric shapes can be thought of as hinges, cones, slides, balloons, surfaces, and other surfaces. As a result of intersection of their surfaces, flat or spatial curves are formed. In drawing the architectural objects, objects and details of the car, it is necessary to make projections of these lines in the drawing. At the cross-section of two surfaces, we can see the following four states (Graph 1).

![Graph 1](image)

Auxiliary cutting method is used when the surfaces of the intersection are bubbles or one of them is a hood. The essence of this method is that the intersecting surfaces are cut off by the auxiliary plane. The points formed by the planar cross-section of the surfaces form the common intersection line for both surfaces.

When drawing a surface intersection, it is enough to identify 7 or 9 points. The focal points are smoothly coupled with the lecalo (Graph 2).
Graph 2

If the intersecting surfaces have a common axis, their intersection is a rotation with a perpendicular axis (Graph 3).

Graph 3

As can be seen from these drawings, it is the reflection of the elements of the imagination and its features in the human mind.

In conclusion, we can say that the use of Oriental architectural traditions in direct drawing geometry and drawing lessons will help each student to master each topic and to enhance the level of space exploration in students by 100%.

REFERENCES


