Early Detection of Banking Crises in Indonesia with Adaptive Neuro Fuzzy Inference System

Elliana Gautama

Abstract


Banking crises occurring in a country have a devastating impact on the country's economy and financial system. The threat of the coming banking crisis in Indonesia can be detected by looking at the movement of banking performance indicators such as Total Assets, Bad Debt Ratio, Return on Assets and Loan to Deposit Ratio. So far there is no standard or standard benchmark to indicate the condition of the banking system is in a crisis condition. Therefore it is very necessary to establish an early warning system that can detect a banking crisis in Indonesia so that appropriate policies to deal with disruptions can be taken immediately to prevent the occurrence of the crisis. Many methods are developed to develop a model that can provide such an early warning. Neuro-Fuzzy is one of the most commonly used methods of prediction or diagnosis, with fairly good accuracy. Neuro-Fuzzy is a combination of a Backpropagation Neural Network concept with the fuzzy logic concept. In this study, the authors tried to use the Neuro-Fuzzy method to perform early detection of the banking crisis in Indonesia.


Keywords


banking crises, indicators of banking performance, neuro-fuzzy, ANFIS

Full Text:

PDF

References


Dermiguc – Kunt, Asli, and Enrica Detragiache, (1998), “The Determinants of Banking Crises in Developing and Developed Countries”, IMF Staff Papers Vol. 45 No. 1 (March), International Monetary Fund, Washington.

Dewi, Candra, Dany Primanita, Yusi Tyroni Mursityo. (2014). “Prediksi Cuaca Pada Data Time Series Menggunakan Adaptive Neuro Fuzzy Inference System (ANFIS)”, Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), Vol.1, No.1, April 2014, hlm, 18-24.

Fariza, A. (2007). Performansi Neuro Fuzzy untuk Peramalan Data Time Series. Seminar Nasional Aplikasi Teknologi Informasi (SNATI). Yogyakarta.

Fitriah, Aidatul, Agus Maman Abadi. (2011). “Aplikasi Metode Neuro-Fuzzy Untuk Prediksi Tingkat Inflasi di Indonesia”, Prosiding Seminar Nasional Matematika dan Pendidikan Matematika – Universitas Negeri Yogyakarta, Desember 2011, hlm 8-20.

Florencia Sukma Christi S. (2011). “Sistem Deteksi Dini Krisis Perbankan Indonesia Dengan Indikator CAR, BDR, ROA, LDR, dan Makro Ekonomi (Studi Kasus Pada Bank Umum) Periode Tahun 2003-2009”, Universitas Diponegoro, Semarang.

Hadad, Muliaman D., Wimboh Santoso, Bambang Arianto. (2003). “Indikator Awal Krisis Perbankan”, JEL Classification : E44, G21, www.bi.go.id.

Hagen von Jurgen and Ho Tai-kuang. (2003). “Money Market Pressure and the Determinants of Banking Crises”, Center for European Integration Studies Journal April 2003, University of Bonn.

Hardy, Daniel C. & Ceyla Pazarbasioglu, (1999), “Determinants and Leading Indicators of Banking Crises: Further Evidence”, IMF Staff Papers Vol. 46 No. 3 September/December 1999, International Monetary Fund, Washington.

Jang, J. S. R., Sun, C. T. E., Mizutani. (1997). Neuro-Fuzzy and Soft Computing. Prentice Hall. London.

Kaminsky, Graciela, Saul Lizondo, and Carmen M. Reinhart, (1998), “Leading Indicators of Currency Crises”, IMF Staff Papers Vol.45 No. 1 (March), International Monetary Fund, Washington. from past mistakes”, The Independent Review, v.II, n.1., p.55.

Kaufman, George F. (1997). “Preventing Banking Crises in the future: Lesson from past Mistakes”, The Independent Review, vII, n.1. Summer 1997.

Kusumadewi, Sri dan Sri Hartati. (2010). “Neuro-Fuzzy Integrasi Sistem Fuzzy & Jaringan Syaraf”. Edisi 2. Graha Ilmu Yogyakarta.

Singla, P., Rai, H. M. dan Singla, S. (2011). “Local Monsoonal Precipitation Forecasting using ANFIS Model: a Case Study for Hisar”. Internasional Journal of Research and Reviews in Computer Science, Vol.2 No.3.

Oktavilia, Shanty. (2008). “Deteksi Dini Krisis Perbankan Indonesia: Identifikasi Variabel Makro Dengan Model Logit”. JEJAK Volume 1, Nomor 1, September.

www.bi.go.id. “Data Perbankan Indonesia” Tahun 1997:1998, 2003-2009. Tanggal akses terakhir 18 Juli 2018.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Elliana Gautama

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.