Numerical Characterization of Cu(In,Ga)Se2 Solar Cells Using Capacitance-Voltage and Capacitance-Frequency Characteristics

Daouda Oubda, Marcel B. Kebre, Soumaïla Ouédraogo, François Zougmoré, Frédéric Ouattara, Zacharie Koalga


The paper presents the effects of buffer layer thickness, operating temperature, and series resistances on the capacitance-voltage and capacitance-frequency (C-f) characteristics of the standard ZnO/CdS/OVC/Cu(In,Ga)Se2/Mo thin film solar cells.
The numerical simulation tool used is a one dimensional program: Solar Cell Capacitance Simulator (SCAPS). We found that, the junction capacitance value increases when the recombination rate of carrier becomes important resulting in an increasing of electrical field intensity. Series resistances (Rs) are factors limiting the solar cells performance. This paper proposes a theoretical model where the effects of Rs onto the solar cell are minimized. For a better optimization of solar cell model performance we get a value of Rs ≤1 Ω*cm², Rsh≥1000 Ω*cm² and the operating temperature to the order of 260 to 380 K.


Buffer layer; Operating temperature; Rs; Recombination rate; Electrical field intensity; Capacitance value.

Full Text:



potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8% Phys. Status Solidi RRL 8, N° 3, 219–222 (2014) / DOI 10.1002/pssr.201409040.

Hossein Movla, Optimization of the CIGS based thin film solar cells: Numerical simulation and analysis, Optik 125 (2014) 67-70. J.

Daouda Oubda, Marcel Bawindsom Kebre, François Zougmoré, Donatien Njomo and Frédéric Ouattara, Numerical Simulation of Cu(In,Ga)Se2 Solar Cells Performances, Journal of Energy and Power Engineering 9 (2015) 1047-1055 doi: 10.17265/1934-8975/2015.12.002

A. Darga and al. Comparative study of Cu(In,Ga)Se2/(PVD)In2S3 and Cu(In,Ga)Se2/(CBD)CdS heterojunction based solar cells by admittance spectroscopy, current–voltage and spectral response measurements Thin Solid Films 517 (2009) 2423–2426.

Chia-Hua Huang Effects of Ga content on Cu(In, Ga)Se2 solar cells studied by numerical modeling. Journal of Physics and Chemistry of Solids 69 (2008) 330–334.

M. Burgelman and al. Defects in Cu(In,Ga)Se2 Semiconductors and their role in the Device Performance of Thin-film Solar Cells Progress In Photovoltaics: Research And Application, Vol. 5,121-130 (1997).

Jin Woo Lee, Metastability of Copper Indium Gallium Diselenide Polycrystalline Thin Film Solar Cell Devices [Doctoral Thesis] University of Oregon Graduate School, 2008.

Habibe Bayhan A. Sertap Kavasoglu Study of CdS/Cu(In,Ga)Se2 heterojunction interface using admittance and impedance spectroscopy. Solar Energy 80 (2006) 1160–1164.

Kanevce Ana. Anticipated performance of Cu(In, Ga)Se2 solar cells in the thin-film limit, Doctoral thesis, Colorado State University, 2007.

Marc Burgelman, Johan Verschraegen, Stefaan Degrave and Peter Nollet Modeling Thin-film PV Devices Progress in Photovoltaics: Research and Applications Prog. Photovolt: Res. Apply. 2003;11:1-11 (DOI: 10.1002/pip.524).

Nakada and A. Kunioka, Direct evidence of Cd diffusion into Cu(In,Ga)Se2 thin films during chemical-bath deposition process of CdS films, J. Applied Physics Letters 74, 2444 (1999).

Tokio Nakada, Masashi Hongo, Eiji Hayashi, Band offset of high efficiency CBD-ZnS CIGS thin film solar cells Thin Solid Films 431 –432 (2003) 242–248.

Marko Nerat, Franc Smole, Marko Topic A simulation study of the effect of the diverse valence-band offset and the electronic activity at the grain boundaries on the performance of polycrystalline Cu(In,Ga)Se2 solar cells Thin Solid Films 519 (2011) 7497–7502.

C. Deibel, V. Dyakonov, and J. Parisi Defect Spectroscopy on Damp-Heat Treated ZnO/CdS/Cu(In,Ga)(S,Se)2/Mo Heterojunction Solar Cells, 691 – 702 (2003); received October 14, 2003.

A. Bouloufa , K. Djessas , A. Zegadi Numerical simulation of Cu(Inx Ga1 – x)Se2 solar cells by AMPS-1D Thin Solid Films 515 (2007) 6285–6287.

Jiyon Song, Sheng S. Li, C.H. Huang, O.D. Crisalle, T.J. Anderson. Device modeling and simulation of the performance of Cu(Inx-1,Gax)Se2 solar cells Solid-State Electronics 48 (2004) 73-79.

I. Bouchama, K. Djessas, F. Djahli , A. Bouloufa Simulation approach for studying the performances of original superstrate CIGS thin films solar cells Thin Solid Films 519 (2011) 7280–7283.

S. Ouédraogo, F. Zougmoré, and J.M. Ndjaka, Numerical Analysis of Copper-Indium-Gallium -Diselenide, Based Solar Cells by SCAPS-1D, Hindawi Publishing Corporation International Journal of Photoenergy Volume 2013, Article ID 421076, 9 pages

N. Naghavi, G. Renou, V. Bockelee, F. Donsanti, P. Geneve, M. Jubault, J.F. Guillemoles, D. Lincot Chemical deposition methods for Cd-free buffer layers in CI(G)S solar cells: Role of window layers Thin Solid Film 519 (2011) 7600-7605.

Uwe Rau, Marion Schmidt Electronic properties of ZnO/CdS/Cu(In,Ga)Se2 solar cells aspects of heterojunction formation Thin Solid Films 387 (2001) 141-146.

Puvaneswaran Chelvanathan, Mohammad Istiaque Hossain, Nowshad Amin, Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. J. Current Applied Physics. 10 (2010) S387-391

Alex Niemegeers, Marc Burgelman, Stefaan Degrave, Johan Verschraegen, Koen Decock SCAPS Manual Version 24 April 2012.

[23] Stefaan Degrave, Marc Burgelman, Peter Nollet, Modeling of polycrystalline thin film solar cells: new feature in SCAPS version 2.3 Presented (2P-D3-50) at the 3rd World Conference on Photovoltaic Energy Conversion WCPEC-3, Osaka, Japan,12-16 May 2003.

[24] Gloeckler M. Device physics of Cu(In,Ga)Se2 thin-film solar cell, [Doctoral thesis], Colorado State University 2005- CO- 80523.

J. David Cohen, Jennifer T. Heath, Identifying the electronic properties relevant to improving the performance of high band-gap copper Based I-III-VI2 chalcopyrite thin film photovoltaic devices 2004, National Renewable Energy Laboratory, Subcontract N°: XAT-4-33624-08.

J. David Cohen, Jin Woo Lee, William N. Shafarman The determination of carrier mobilities in CIGS photovoltaic devices using high-frequency admittance measurements, Thin Solid Films 480–481 (2005) 336–340.


  • There are currently no refbacks.

Copyright (c) 2018 Daouda Oubda, Marcel B. Kebre, Soumaïla Ouédraogo, François Zougmoré, Frédéric Ouattara, Zacharie Koalga

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.