Geometry Optimization Skills of DFTB: Simple to Complex Molecular Systems

Anant Babu Marahatta, Hirohiko Kono


As the Density-functional theory (DFT) is an exact theory in principle for computing ground state electronic structures of the multi-electron and many-body systems, it's approximate variants currently being used  are far from fail-safe. One of the very fundamental problem that has become apparent is its inability to account the substantial effect of van der Waals (vdW) type interactions exist in large molecular assemblies. To overcome such problem, a density functional tight binding (DFTB) theory whose fundamental formulation is based on the DFT but implements Slater−Kirkwood model and Slater−Koster files with a focus on solid state systems having vdW interactions as a binding force has been widely used recently. Its self-consistent charge (SCC) approach is more promising theoretical model due to introducing self-consistent calculation of Mulliken charges. Present work is aimed at evaluating the geometry optimization skills of such DFTB method while applying to very simple to quite complex molecular systems of the order: water, benzene, crystalline 1,4-bis (tri-methylsilyl) benzene, and crystalline siloxaalkane. We fully optimized the isolated molecules of each of them as well as the unit cell geometries of the last two specimens and measured the dimensions of the particular sets of bond lengths, bond angles, and torsional angles in each optimized geometry. These values are found to be in an excellent agreement with the concerned experimental values. It makes the DFTB method very versatile and superb quantum mechanical model for computing ground state electronic structures.


DFTB, Self-Consistent Charge (SCC), Geometry Optimization, Molecular Geometry, Crystalline Molecular Systems

Full Text:



F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann, Advanced Inorganic Chemistry (Wiley-Interscience, 1999).

G. L. Miessler and D. A. Tarr, Inorganic Chemistry (Prentice-Hall, 1999).

R. Daudel, Electronic Structure of Molecules (Elsevier, 1966).

R. D. Madan, Modern Inorganic Chemistry (S. Chand & Company, 1997)

D. A. McQuarrie and J. D. Simon, Physical Chemistry: Molecular Approach (Viva Books, 1998).

B. B. Yehuda and Y. Avishai, Quantum Mechanics with Applications to Nanotechnology and Information Science (ScienceDirect, 2013).

P. Hohenberg and W. Kohn, Phys. Rev. B. 136, 864 (1964).

W. Kohn and L. Sham, Phys. Rev. J. 140, A1133 (1965).

A. J. Cohen, P. M. Sánchez and W. Yang, Science 321, 792 (2008).

A. D. Buckingham, P. W. Fowler and J. M. Hudson, Chem. Rev. 88 (6), 963 (1988).

J. Tao, J. P. Perdew and A. Ruzsinszky, Proc. Natl. Acad. Sci. U. S. A. 109 (1), 18 (2012).

A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett. 91, 146401-1 (2003).

D. Porezag, Th. Frauenheim, T. Kohler, G. Siefert and R. Kaschner, Phys. Rev. B, 51, 12947 (1995).

G. Seifert, D. Porezag and Th. Frauenheim, Int. J. Quan. Chem. 58, 185 (1996).

G. Seifert, J. Phys. Chem. A 111, 5609 (2007).

G. Zheng, S. Irle and K. Morokuma, Chem. Phys. Lett. 412, 210 (2005).

B. Aradi, B. Hourahine and T. Frauenheim, J. Phy. Chem. A 111, 5678 (2007).

M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai and G. Seifert, Physical Review B 58, 7260 (1998).

T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Köhler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. D. Carlo and S. Suhai, J. Phy. Cond. Matt. 14, 3015 (2002).

M. Elstner, P. Hobza, Th. Frauenheim, S. Suhai and E. Kaxiras, J. Chem. Phys. 114, 5149 (2001).

E. Rauls, R. Gutierrez, J. Elsner and Th. Frauenheim, Solid State Comm.111, 459 (1999).

C. Koehler, Z. Hajnal, P. Deak, Th. Frauenheim and S. Suhai, Phys. Rev. B 64, 085333 (2001).

A. B. Marahatta, M. Kanno, K. Hoki, W. Setaka, S. Irle and H. Kono, J. Phys. Chem. C 116, 24845 (2012).

M. Elstner, Th. Frauenheim, E. Kaxiras, G. Seifert and S. Suhai, Phys. Status Solidi B 217, 357 (2000).

A. B. Marahatta and H. Kono, Int. J. Inn. Res. Adv. Stud. 6,180 (2019).

R. D. Dennington, T. A. Keith and J. M. Millam, GaussView (Gaussian Inc., 2008).

NIST chemistry webbook, SRD 69. C1318 3705&Mask=400

M. Haberecht, H. Lerner and M. Bolte, Acta. Cryst. E58, 0436 (2002).

W. Setaka, S. Ohmizu, C. Kabuto and M. Kira, Chem. Lett. 36, 1076 (2007).

DFTB+ manual. pdf

Jmol: an open-source Java viewer for chemical structures in 3D.

D. E. Bean and P. W. Fowler, J. Phys. Chem. A 115 (46), 13649 (2011).

S. Böhm and O. Exner, Org. Biomol. Chem. 5 (13), 2081 (2007).

G. J. Richard and C. Julian, Silicon-Containing Polymers: The Science and Technology of Their Synthesis and Applications (Springer publication, 2000).


  • There are currently no refbacks.

Copyright (c) 2019 Anant Babu Marahatta

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.