The Effects of Tinospora crispa Aqueous Extract on C-Reactive Protein Level and Development of Atherosclerotic Plaques

ZAMREE BIN SHAH, Mohd Kamal BIN Nik Hasan, Khairul Kamilah binti Abdul Kadir, Mohd Shahidan Bin Mohd Arshad, Zulkhairi Bin Amom


Tinospora crispa is reported to have anti-atherosclerotic effects and has great potential for use in traditional medicine, supplements and pharmaceutical preparations. However, to date there is not much literature documenting the effects of this plant on C-reactive protein and the development of atherosclerotic plaques in the event of hypercholesterolemia. Therefore, this study aimed to examine the effect of Tinospora crispa aqueous extract (TCAE) on C-reactive protein levels and the development of atherosclerotic plaques to better understand the possible mechanisms contributing to the anti-atherosclerotic effects of this plant. The results showed that TCAE was found to inhibit the development of atherosclerotic plaques caused by dietary cholesterol. The anti-atherosclerotic potential of TCAE is demonstrated by its ability to reduce CRP levels, atherosclerotic plaque coverage area and foam cell thickness at atherosclerotic lesions and maintain endothelial healing after arterial injury. Administration of 450 mg / kg of T. crispa extract was found to be the optimal concentration to control hypercholesterolemia and in turn reduce the risk factors of coronary artery disease.


Tinospora crispa, hypercholesterolemic rabbits, C-reactive protein, atherosoclerosis

Full Text:



Cardoso & Paulos, 2017). Cardoso, I.L., Paulos, A.T. (2017). C Reactive Protein and Cardiovascular Disease. Int Arch Cardiovasc Dis 1:003

Pasceri et al., 2000)Pasceri, V., Willerson, J. T., Yeh, E. T. H. (2000). Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 102 (18), 2165-2168

Ibrahim, M., Ahmed, I. A., Mikail, M. A., Ishola, A. A., Draman, S., Isa, M. L. M., & Yusof, A. M. (2017). Baccaurea angulata fruit juice reduces atherosclerotic lesions in diet-induced Hypercholesterolemic rabbits. Lipids in health and disease, 16(1), 134.

Otto, C., Geiss, H. C., Empen, K., Parhofer, K. G. (2004). Long-term reduction of C-reactive protein concentration by regular LDL apheresis. Atherosclerosis, 174 (1), 151-156.

Welty, F. K. (2013). How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis? Current cardiology reports, 15(9), 400.

Jain, P. K. and Joshi, S. C. (2016). Atherosclerosis, inflammation and oxidative stress. SGVU Int J Env Sc and Technol, Vol 2, Issue 2, 2016, pp.17-29, ISSN: 2394-9570.

Merkel, M., Velez-Carrasco, W. C., Hudgins, L. C., & Breslow, J. L. (2001). Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice. Proceedings of the National Academic of Sciences, 98, 13294-13299.

Lusis, A. J. (2000). Atherosclerosis. Nature, 407, 223-241.

Steiberg, 2002). Steiberg, D. (2002). Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8(11): 1211-1217.

Mendis, S., Puska, P., Norrving, B. (2011). World Health Organization. World Heart Federation. World Stroke Organization. Mendis S., Puska P., Norrving B., editors. Global Atlas on Cardiovascular Disease Prevention and Control. Availableonline:

Longo-Mbenza, B., Longokolo Mashi, M., Lelo Tshikwela, M., Mokondjimobe, E., Gombet, T., Ellenga-Mbolla, B., et al. (2011). Relationship between younger age, autoimmunity, cardiometabolic risk, oxidative stress, HAART, and ischemic stroke in Africans with HIV/AIDS. ISRN cardiology, 2011.

Steinberg, D. (2004). Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part I. J Lipid Res. 45:1583–1593.

Ahmad, W., Jantan, I., & Bukhari, S.N.A. (2016). Tinospora crispa (L.) Hook.f. & Thomson: A review of its ethnobotanical, phytochemical, and pharmacological aspects. Frontiers in pharmacology, 7(59), 1-19.

Zulkhairi, A., Hasnah, B., Sakinah, I., Nur Amalina, I., Zamree, M.S., Mohd Shahidan, A. (2009). Nutritional composition, antioxidant ability and flavonoid content of Tinospora crispa stem. Adv. Nat. Appl. Sci. 3, 88–94.

Kamarazaman, I.S., Amom, Z., & Ali, R.M. (2012a). Inhibitory properties of Tinospora crispa extracts on TNF-α induced inflammation on human umbilical vein endothelial cells (HUVECS). Int. J. Trop. Med. 7, 24–29. doi:10.3923/ijtmed.2012.24.

Krauss, R. M. (2005). Dietary and genetic probes of atherogenic dyslipidemia. Arteriosclerosis, thrombosis, and vascular biology, 25(11), 2265-2272.

Chen, J., Zhao, H., Yang, Y., Liu, B., Ni, J., Wang, W. (2011). Lipid-lowering and antioxidant activities of Jiang-Zhi-Ning in Traditional Chinese Medicine. J. Ethnopharmacol. 134(3): 919-930.

Shrivastava et al.Shrivastava, A. K., Singh, H. V., Raizada, A., & Singh, S. K. (2015). C-reactive protein, inflammation and coronary heart disease. The Egyptian Heart Journal, 67(2), 89-97.

Ridker, P. M., Buring, J. E., Cook, N. R., & Rifai, N. (2003). C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation, 107(3), 391-397.

Yu, Q., Li, Y., Waqar, A. B., Wang, Y., Huang, B., Chen, Y., & Liu, E. (2012). Temporal and quantitative analysis of atherosclerotic lesions in diet-induced hypercholesterolemic rabbits. BioMed Research International, 2012.

Sun, H., Koike, T., Ichikawa, T., Hatakeyama, K., Shiomi, M., Zhang, B., & Chen, Y. E. (2005). C-reactive protein in atherosclerotic lesions: its origin and pathophysiological significance. The American journal of pathology, 167(4), 1139-1148.

Walzem, R. L. (1995). Older plasma lipoproteins are more susceptible to oxidation: a linking mechanism for the lipid and oxidation theories of atherosclerotic cardiovascular disease. Proceedings of the National Academy Sciences of the USA, 92, 7240.

Zwaka, T. P., Hombach, V., & Torzewski, J. (2001). C-reactive protein–mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis. Circulation, 103(9), 1194-1197.

Mehta, S. K., Rame, J. E., Khera, A., Murphy, S. A., Canham, R. M., Peshock, R. M., & Drazner, M. H. (2007). Left ventricular hypertrophy, subclinical atherosclerosis, and inflammation. Hypertension, 49(6), 1385-1391.

Shukla, R., Gupta, S., Gambhir, J. K., Prabhu, K. M., & Murthy, P. S. (2004). Antioxidant effect of aqueous extract of the bark of Ficus bengalensis in hypercholesterolaemic rabbits. Journal of ethnopharmacology, 92(1), 47-51.

Dave, T., Ezhilan, J., Vasnawala, H., Somani, V. (2013). Plaque regression and plaque stabilisation in cardiovascular disease. Indian Journal of Endocrinology and Metabolism, 17(6); 983-989.

Ambrose, J. A., & Martinez, E. E. (2002). A new for plaque stabilization. Circulation. 105:2000–2004

Aikawa, M., Rabkin, E., Okada, Y., Voglic, S. J., Clinton, S. K., Brinckerhoff, C. E, et al. (1998). Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheromas: A potential mechanism of lesion stabilization. Circulation. 97:2433–44.

Yanni, A. E. (2004). The laboratory rabbit: an animal model of atherosclerosis research. Lab Anim (UK) 38:246–256

Ross, R. (1986). The pathogenesis of atherosclerosis—an update. New England Journal of Medicine, 314(8), 488-500.

Kano, H., Hayashi, T., Sumi, D., Esaki, T., Asai, Y., Kumar, N., et al, (1999). A HMG-CoA reductase inhibitor improved regression of atherosclerosis in the rabbit aorta without affecting serum lipid levels: possible relevance of up-regulation of endothelial NO-synthase RNA. Biochem. Biophys. Res. Commun. 259:414–419.

Soma, M. R., Donetti, E., Parolini, C., Mazzini, G., Ferrari, C., Fumagalli, R., & Paoletti, R. (1993). HMG CoA reductase inhibitors. In vivo effects on carotid intimal thickening in normocholesterolemic rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 13(4), 571-578.

Gaist, D., Jeppesen, U., Andersen, M., Garcia-Rodriguez, L. A., Hallas, J., Sindrup, S. H. (2002). Statins and risk of polyneuroopathy. Neurology, 58: 1333-1337.

Golomb, B. A., & Evans, M. A. (2008). Statin Adverse Effects: A review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs; 8(6):373-418.

Lee, P., & Prasad, K. (2003). Effects of flaxseed oil on serum lipids and atherosclerosis in hypercholesterolemic rabbits. Journal of cardiovascular pharmacology and therapeutics, 8(3), 227-235.

Libby, P. (2001). Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104 (3), 365-372

Sukhova, G. K., Williams, J. K., & Libby, P. (2002). Statins reduce inflammation in atheroma of nonhuman primates independent of effects on serum cholesterol. Arteriosclerosis, thrombosis, and vascular

Schartl, M., Bocksch, W., Koschyk, D. H., Voelker, W., Karsch, K. R., Kreuzer, J., & German Atorvastatin Intravascular Ultrasound Study Investigators. (2001). Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease. Circulation, 104(4), 387-392.

Van Niekerk, J. L., Hendriks, T., Gevers Leuven, J. A., Havekes, L., de Boer, H. H. (1984). The lipid lowering effects of 3-hydroxy-3-methylglutaric acid and bile acid drainage in WHHL rabbits. Clin Sci. 67:439–444.

Di Padova, C., Bosisio, E., Cighetti, G., Rovagnati, P., Mazzochi, M., Colombo, C., et al, (1982). 3-Hydroxy-3-methylglutaric acid (HMGA) reduces dietary cholesterol induction of saturated bile in hamster. Life Sci. 30:1907–1914.

Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M., & Tai, T.C. (2013). Polyphenols: Benefits to the cardiovascular system in health and in aging. Nutrients, 5, 3779-3827.

Reape, T. J., & Groot, P. H. (1999). Chemokines and atherosclerosis. Atherosclerosis, 147(2), 213-225.

Springer, T. A. (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell, 76(2), 301-314.

Kunsch, C., Luchoomun, J., Grey, J. Y., Olliff, L. K., Saint, L. B., Arrendale, R. F., ... & Medford, R. M. (2004). Selective inhibition of endothelial and monocyte redox-sensitive genes by AGI-1067: a novel antioxidant and anti-inflammatory agent. Journal of Pharmacology and Experimental Therapeutics, 308(3), 820-829.

Ashby, D. T., Rye, K. A., Clay, M. A., Vadas, M. A., Gamble, J. R., & Barter, P. J. (1998). Factors influencing the ability of HDL to inhibit expression of vascular cell adhesion molecule-1 in endothelial cells. Arteriosclerosis, thrombosis, and vascular biology, 18(9), 1450-1455

Kamarazaman, I. S., Amom Z., Ali, R. M., Akim, A.M., Azman, K.M., Arapoc, D.J., et al. (2012b). Protective effects of Tinospora crispa extracts on H2O2 induced oxidative stress and TNF-α-induced inflammation on human umbilical vein endothelial cells (HUVECs). J. Med. Plants Res. 6, 3013–3021

Ignarro, L. J., Cirino, G., Casini, A., Napoli, C. (1999). Nitric oxide as a signaling molecule in the vascular system: An overview. J. Cardiovasc. Pharmacol, 34: 876–884.

Anderson, T. J., Gerhard, M. D., Meredith, I. T., Charbonneau, F., Delagrange, D., Creager, M. A., et al. (1995). Systemic nature of endothelial dysfunction in atherosclerosis. Am. J. Cardiol., 75: 71B–74B.

Pandey, K.B., & Rizvi, S.I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2, 270–278.



  • There are currently no refbacks.

Copyright (c) 2021 ZAMREE BIN SHAH, Mohd Kamal BIN Nik Hasan, Khairul Kamilah binti Abdul Kadir, Mohd Shahidan Bin Mohd Arshad, Zulkhairi Bin Amom

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.