Simple Allometry To Estimate The Aboveground Tree Biomass For Five Cool-Broadleaved Species Of Bhutan Himalaya

Yog Raj Chhetri, Bhagat Suberi, OM Katel


Million tons of carbon was found to be stored in the forest biomass with maximum storage capacity in the broadleaved trees. Developing tree biomass allometric equation being considered fundamental to determine the carbon sequestration potential of tree species. Thus, five broadleaved tree species of Quercus lamellosa, Beilschemidia sikkimensis, Castonopsis hystrix, Persea clerkania and Symplocos sumintia were destructively sampled using Randomized Branch Sampling technique (RBS) to develop allometry for aboveground biomass estimation in cool broadleaved forests in Bhutan. The total of 159 sample trees with minimum 32 trees from each species under different diameter class (5 cm < 90 cm), height class (4 m < 46 m) from four physiographic zones were sampled. The observed total aboveground dry biomass of the trees ranges from 4.12 < 5579.31 kg; 3.62 < 3464.51 kg; 5.99 < 3600.52; 8.89 < 3689.82 kg; kg and 7.08 < 2993.22 kg respectively for above five species. Linear regression was attributed to heteroskedasticity with un-equal distribution of the residual errors. While linearized regression with transformed variables exhibited the best fit line for biomass estimation. Significant prediction of aboveground tree biomass was observed with natural log base transformed linearized power function of DBH -tree height relationships (t (29) = 11.91, 1.63, p ≤ .001) R² = .98) followed by the transformed model of DBH as independent variable (t (30) = 34.31, p ≤ .001) R² = .97). Therefore, the study concluded that, linearized power function with antilog bias correction factor seemed better in predicting aboveground tree biomass of cool broadleaved species in Bhutan


Model, Allometry, Biomass, Diameter (DBH), Carbon, Logarithmic, Estimation.

Full Text:



FAO. (2020). The State of the World’s Forests 2020; Forest biodiversity and people. In The State of the World’s Forests 2020. Food and Agriculture Organization of the United Nations. Required.

Domke, G. M., Woodall, C. W., Smith, J. E., Westfall, J. A., & McRoberts, R. E. (2012). Consequences of alternative tree-level biomass estimation procedures on U.S. forest carbon stock estimates. Forest Ecology and Management, 270, 108–116.

Rathore, A. C., Kumar, A., Tomar, J. M. S., Jayaprakash, J., Mehta, H., Kaushal, R., Alam, N. M., Gupta, A. K., Raizada, A., & Chaturvedi, O. P. (2018). Predictive models for biomass and carbon stock estimation in Psidium guajava on bouldery riverbed lands in North-Western Himalayas, India. Agroforestry Systems, 92(1), 171–182.

Ramachandra, T. V., & Bharath, S. (2020). Carbon Sequestration Potential of the Forest Ecosystems in the Western Ghats, a Global Biodiversity Hotspot. Natural Resources Research, 29(4), 2753–2771.

Marklund, L. G., & Schoene, D. (2006). Global assessment of growing stock, biomass and carbon stock. Global Forest Resources Assessment 2005 Working Paper 106/E, 55.

Köhl, M., Baldauf, T., Plugge, D., & Krug, J. (2009). Reduced emissions from deforestation and forest degradation (REDD): A climate change mitigation strategy on a critical track. Carbon Balance and Management, 4, 1–10.

Shibata, M., Koeda, S., Noji, T., Kawakami, K., Ido, Y., Amano, Y., Umezawa, N., Higuchi, T., Dewa, T., Itoh, S., Kamiya, N., & Mizuno, T. (2016). Design of New Extraction Surfactants for Membrane Proteins from Peptide Gemini Surfactants. Bioconjugate Chemistry, 27(10), 2469–2479.

A. Tesfaye, M., Bravo-Oviedo, A., Bravo, F., Pando, V., & de Aza, C. H. (2019). Variation in carbon concentration and wood density for five most commonly grown native tree species in central highlands of Ethiopia: The case of Chilimo dry Afromontane forest. Journal of Sustainable Forestry, 38(8), 769–790.

Walker, W., Baccini, A., Nepstad, M., Horning, N., Knight, D., Braun, E., & Bausch, A. (2011). Biomass and Carbon Estimation. In Field Guide for Forest Biomass and Carbon Estimation (pp. 43–49). Woods Hole Research Center.

West, P. W. (2015). Tree and Forest Measurement. In Tree and Forest Measurement.

Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99.

Diedhiou, I., Diallo, D., Mbengue, A., Hernandez, R. R., Bayala, R., Diéme, R., Diédhiou, P. M., & Sène, A. (2017). Allometric equations and carbon stocks in tree biomass of Jatropha curcas L. in Senegal’s Peanut Basin. Global Ecology and Conservation, 9, 61–69.

Singh, V., Tewari, A., Kushwaha, S. P. S., & Dadhwal, V. K. (2011). Formulating allometric equations for estimating biomass and carbon stock in small diameter trees. Forest Ecology and Management, 261(11), 1945–1949.

Kebede, B., & Soromessa, T. (2018). Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosystem Health and Sustainability, 4(1), 1–12.

Sillett, S. C., Van Pelt, R., Carroll, A. L., Campbell-Spickler, J., Coonen, E. J., & Iberle, B. (2019). Allometric equations for Sequoia sempervirens in forests of different ages. Forest Ecology and Management, 433(August 2018), 349–363.

Mugasha, W. A., Mwakalukwa, E. E., Luoga, E., Malimbwi, R. E., Zahabu, E., Silayo, D. S., Sola, G., Crete, P., Henry, M., & Kashindye, A. (2015). Allometric Models for Estimating Tree Volume and Aboveground Biomass in Lowland Forests of Tanzania. International Journal of Forestry Research, 2016.

Singh, S. P., Bhupendra S. Adhikari, & Donald B. Zobel. (1994). Biomass, productivity, leaf longevity, and forest structure in the central Himalaya. Ecological Monographs, 64(4), 401–421.

FRMD. (2020). Forest Facts and Figures-2019;Forest Resource Management Division;Department of Forest and Park Services,Thimphu,Bhutan.

Cannell, M. G. R. (1984). Woody mass of forest stands. Forest Ecology and Management, 8, 299–312.

Forest Survey of India (FSI). (2017). Carbon Stock in India’s Forest. In Isfr (pp. 121–136).

Litton, C. M. (2008). Allometric Models for Predicting Aboveground Biomass in Two Widespread Woody Plants in Hawaii. 40(3), 313–320.

Zhou, X., Hemstrom, M. A., & Pacific Northwest Research, S. (2009). Estimating aboveground tree biomass on forest land in the Pacific Northwest : a comparison of approaches. Forestry Sciences, 584.(November), 18 ill. 28 cm.

Litton, C. M., & Kauffman, J. B. (2008). Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica, 40(3), 313–320.

Zianis, D., Muukkonen, P., Mäkipää, R., & Mencuccini, M. (2005). Biomass and stem volume equations for tree species in Europe. In Silva Fennica Monographs (Vol. 4, Issue 4).

Djomo, A. N., & Chimi, C. D. (2017). Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: Case study with application to remote sensing. Forest Ecology and Management, 391, 184–193.

Arora, G., Chaturvedi, S., Kaushal, R., Nain, A., Tewari, S., Alam, N. M., & Chaturvedi, O. P. (2014). Growth, biomass, carbon stocks, and sequestration in an age series of Populus deltoids plantations in Tarai region of central Himalaya. Turkish Journal of Agriculture and Forestry, 38(4), 550–560.

Purna, C. (2016). The Randomized Branch Sampling -a Cost Effective Estimation. Indian Forester, 142(March), 47–61.

Gregoire, T. G., Valentine, H. T., & Furnival, G. M. (1995). Sampling methods To estimate foliage and other charecteristics of individual trees. Ecological Society of America, 76(4), 1181–1194.

FRMD. (2012). Randomized Branch Sampling Field Protocol for Aboveground Tree Biomass Estimation.

Jessen, J. R. (1955). Determining the Fruit Count on a Tree by Randomized Branch Sampling Author ( s ): Raymond J . Jessen Reviewed work (s): Published by : International Biometric Society Stable URL : . International Biometric Society, 11(1), 99–109.

Lakatos, F., & Mirtchev, S. (2014). Manual for visual assessment of forest crown condition. Food and Agriculture Organization of the United Nations.

Njana, M. A. (2017). Indirect methods of tree biomass estimation and their uncertainties. Southern Forests, 79(1), 41–49.

Walker, W., Baccini, A., Nepstad, M., Horning, N., Knight, D., Braun, E., Bausch, A., Nepstad, D., Horning, N., Knight, D., Braun, E., & Bausch, A. (2011). Tree Diameter Measurements. In Field Guide for Forest Biomass and Carbon Estimation: Vol. 1.0.

Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35(4), 881–902.

Parresol, B. R. (1999). Assessing Tree and Stand Biomass: A Review with Examples and ,. Critica1 Comparisons. Forest Science, 45(4).

Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2003). National-scale biomass estimators for United States tree species. Forest Science, 49(1), 12–35.

Baskerville, G. L. (1972). Use of Logarithmic Regression in the Estimation of Plant Biomass. Canadian Journal of Forest Research, 2(1), 49–53.

Sprugel, D. . (1983). Correction for Bias in Log-Transformed Allomtric Equations. Ecology, 64(1), 209–210.

Kusmana, C., Hidayat, T., Tiryana, T., Rusdiana, O., & Istomo. (2018). Allometric models for above- and below-ground biomass of Sonneratia spp. Global Ecology and Conservation, 15, e00417.

Nogueira Júnior, L. R., Engel, V. L., Parrotta, J. A., Melo, A. C. G. de, & Ré, D. S. (2014). Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands. Biota Neotropica, 14(2), 1–9.

Aozhan, Y. X. U., Hang, J. I. Z., Ranklin, S. C. B. F., Iang, J. U. L., Ing, P. E. N. G. D., Uo, Y. I. Q. I. L., & Hijun, Z. L. U. (2015). Improving allometry models to estimate the above- and belowground biomass of subtropical forest , China. Ecosphere, 6(December), 1–15.

Petersson, H., Holm, S., Sitahl, G., Alger, D., Fridman, Jo., Lehtonen, A., Lundstorm, A., & Makipaa, R. (2012). Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass - A comparative study. Forest Ecology and Management, 270, 78–84.

Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21(2), 137–146.

Jung, Y. (2018). Multiple predicting K-fold cross-validation for model selection. Journal of Nonparametric Statistics, 30(1), 197–215.

de Rooij, M., & Weeda, W. (2020). Cross-Validation: A Method Every Psychologist Should Know. Advances in Methods and Practices in Psychological Science, 3(2), 248–263.

Rodríguez, J. D., Pérez, A., & Lozano, J. A. (2010). Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3), 569–575.

Picard, N., Saint-André, L., & Henry, M. (2012). Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agricultural Organization of the United Nations, Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier.

Huy, B. (2014). Equations for biomass of aboveground trees, branches and leaves biomass in Evergreen Broadleaved forests, and for aboveground biomass of six tree families in Evergreen and Deciduous forests. : Allometric equations at national scale for estimating tree and (G. Sola, A. Inoguchi, & M. Henry (eds.)).

Daba, D. E., & Soromessa, T. (2019). The accuracy of species-specific allometric equations for estimating aboveground biomass in tropical moist montane forests: Case study of Albizia grandibracteata and Trichilia dregeana. Carbon Balance and Management, 14(1), 1–13.

Zeng, W. S., & Tang, S. Z. (2011). Bias correction in logarithmic regression and comparison with weighted regression for non-linear models. Forest Research, 24(2), 137–143.

Snowdon, P. (1991). A ratio estimator for bias correction in logarithmic regressions. Canadian Journal of Forest Research, 21, 720–724.

Mascaro, J., Litton, C. M., Hughes, R. F., Uowolo, A., & Schnitzer, S. A. (2014). Is logarithmic transformation necessary in allometry ? Ten , one-hundred , one-thousand-times yes. 230–233.

Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a Primer. UN, FAO Forestry Paper, 134(January 1997), 13–33.

Correia, A. C., Faias, S. P., Ruiz-Peinado, R., Chianucci, F., Cutini, A., Fontes, L., Manetti, M. C., Montero, G., Soares, P., & Tomé, M. (2018). Generalized biomass equations for Stone pine (Pinus pinea L.) across the Mediterranean basin. Forest Ecology and Management, 429(April), 425–436.

Zianis, D. (2008). Predicting mean aboveground forest biomass and its associated variance. Forest Ecology and Management, 256(6), 1400–1407.

Alvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., Lema, A., Moreno, F., Orrego, S., & Rodríguez, L. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267, 297–308.

Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684–1694.

Ak, R., Li, Y., Vitelli, V., Zio, E., López Droguett, E., & Magno Couto Jacinto, C. (2013). NSGA-II-trained neural network approach to the estimation of prediction intervals of scale deposition rate in oil & gas equipment. Expert Systems with Applications, 40(4), 1205–1212.

Tian, L. U., Cai, T., Goetghebeur, E., & Wei, L. J. (2007). Model evaluation based on the sampling distribution of estimated absolute prediction error. Biometrika, 94(2), 297–311.

Cole, T. G., & Ewel, J. J. (2006). Allometric equations for four valuable tropical tree species. Forest Ecology and Management, 229(1–3), 351–360.

Návar, J. (2009). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257(2), 427–434.

Wang, C. (2006). Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 222(1–3), 9–16.

Djomo, A. N., Knohl, A., & Gravenhorst, G. (2011). Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest. Forest Ecology and Management, 261(8), 1448–1459.



  • There are currently no refbacks.

Copyright (c) 2021 Yog Raj Chhetri, Bhagat Suberi, OM Katel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.